Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease
Silvia Ciappelloni,
Delphine Bouchet,
Nadège Dubourdieu,
Eric Boué-Grabot,
Blanka Kellermayer,
Constance Manso,
Romain Marignier,
Stéphane H.R. Oliet,
Thomas Tourdias,
Laurent Groc
Affiliations
Silvia Ciappelloni
Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
Delphine Bouchet
Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
Nadège Dubourdieu
Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
Eric Boué-Grabot
Université de Bordeaux, 33077 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
Blanka Kellermayer
Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
Constance Manso
Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
Romain Marignier
INSERM U1028, CNRS UMR 5292, Center for Research in Neuroscience of Lyon, Lyon, France
Stéphane H.R. Oliet
Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
Thomas Tourdias
Université de Bordeaux, 33077 Bordeaux, France; INSERM U1215, Neurocentre Magendie, 33077 Bordeaux, France
Laurent Groc
Interdisciplinary Institute for NeuroSciences, CNRS UMR 5297, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France; Corresponding author
Summary: Astrocytes constantly adapt their ramified morphology in order to support brain cell assemblies. Such plasticity is partly mediated by ion and water fluxes, which rely on the water channel aquaporin-4 (AQP4). The mechanism by which this channel locally contributes to process dynamics has remained elusive. Using a combination of single-molecule and calcium imaging approaches, we here investigated in hippocampal astrocytes the dynamic distribution of the AQP4 isoforms M1 and M23. Surface AQP4-M1 formed small aggregates that contrast with the large AQP4-M23 clusters that are enriched near glutamatergic synapses. Strikingly, stabilizing surface AQP4-M23 tuned the motility of astrocyte processes and favors glutamate synapse activity. Furthermore, human autoantibodies directed against AQP4 from neuromyelitis optica (NMO) patients impaired AQP4-M23 dynamic distribution and, consequently, astrocyte process and synaptic activity. Collectively, it emerges that the membrane dynamics of AQP4 isoform regulate brain cell assemblies in health and autoimmune brain disease targeting AQP4. : Ciappelloni et al. use fluorescent imaging approaches to investigate how astrocytes control their highly ramified processes. The membrane dynamics and distribution of aquaporin-4 (AQP4) subtypes control the motility of astrocyte processes, influencing the physiological interplay between astrocyte and neurons. This regulation is targeted by autoantibodies from NMO patients. Keywords: lateral diffusion, water transport, glia, hippocampus, neuromyelitis optica