PLoS ONE (Jan 2009)

IL-12 can target human lung adenocarcinoma cells and normal bronchial epithelial cells surrounding tumor lesions.

  • Irma Airoldi,
  • Emma Di Carlo,
  • Claudia Cocco,
  • Emanuela Caci,
  • Michele Cilli,
  • Carlo Sorrentino,
  • Gabriella Sozzi,
  • Silvano Ferrini,
  • Sandra Rosini,
  • Giulia Bertolini,
  • Mauro Truini,
  • Francesco Grossi,
  • Francesco Grossi,
  • Luis Juan Vicente Galietta,
  • Domenico Ribatti,
  • Vito Pistoia

DOI
https://doi.org/10.1371/journal.pone.0006119
Journal volume & issue
Vol. 4, no. 7
p. e6119

Abstract

Read online

BACKGROUND: Non small cell lung cancer (NSCLC) is a leading cause of cancer death. We have shown previously that IL-12rb2 KO mice develop spontaneously lung adenocarcinomas or bronchioalveolar carcinomas. Aim of the study was to investigate i) IL-12Rbeta2 expression in human primary lung adenocarcinomas and in their counterparts, i.e. normal bronchial epithelial cells (NBEC), ii) the direct anti-tumor activity of IL-12 on lung adenocarcinoma cells in vitro and vivo, and the mechanisms involved, and iii) IL-12 activity on NBEC. METHODOLOGY/PRINCIPAL FINDINGS: Stage I lung adenocarcinomas showed significantly (P = 0.012) higher frequency of IL-12Rbeta2 expressing samples than stage II/III tumors. IL-12 treatment of IL-12R(+) neoplastic cells isolated from primary adenocarcinoma (n = 6) inhibited angiogenesis in vitro through down-regulation of different pro-angiogenic genes (e.g. IL-6, VEGF-C, VEGF-D, and laminin-5), as assessed by chorioallantoic membrane (CAM) assay and PCR array. In order to perform in vivo studies, the Calu6 NSCLC cell line was transfected with the IL-12RB2 containing plasmid (Calu6/beta2). Similar to that observed in primary tumors, IL-12 treatment of Calu6/beta2(+) cells inhibited angiogenesis in vitro. Tumors formed by Calu6/beta2 cells in SCID/NOD mice, inoculated subcutaneously or orthotopically, were significantly smaller following IL-12 vs PBS treatment due to inhibition of angiogenesis, and of IL-6 and VEGF-C production. Explanted tumors were studied by histology, immuno-histochemistry and PCR array. NBEC cells were isolated and cultured from lung specimens of non neoplastic origin. NBEC expressed IL-12R and released constitutively tumor promoting cytokines (e.g. IL-6 and CCL2). Treatment of NBEC with IL-12 down-regulated production of these cytokines. CONCLUSIONS: This study demonstrates that IL-12 inhibits directly the growth of human lung adenocarcinoma and targets the adjacent NBEC. These novel anti-tumor activities of IL-12 add to the well known immune-modulatory properties of the cytokine and may provide a rational basis for the development of a clinical trial.