Summary: Intra-tumor heterogeneity, i.e., the presence of diverse cell types and subpopulations within tumors, presents a significant obstacle in cancer treatment due to its negative consequences for resistance to therapy and disease recurrence. However, the mechanisms that underlie intra-tumor heterogeneity and result in the plethora of different cancer cells within a single lesion remain poorly understood. Here, we leverage the SW480 cell line as a model system to investigate the molecular and functional diversity of colon cancer cells. Through a combination of fluorescence-activated cell sorting (FACS) analysis and transcriptomic profiling, we identified three distinct subpopulations, namely resident cancer stem cells (rCSCs), migratory CSCs (mCSCs), and high-relapse cells (HRCs). These subpopulations show varying Wnt signaling levels and gene expression profiles mirroring their stem-like and functional properties. Examination of publicly available spatial transcriptomic data confirms the presence of these subpopulations in patient-derived cancers and reveals their distinct spatial distribution relative to the tumor microenvironment.