Applied Sciences (Aug 2021)
Use of Seismic Spectral Decomposition, Phase, and Relative Geologic Age as Attributes to Improve Quantitative Porosity Prediction in the Daqing Field, China
Abstract
The high production potential of the Daqing oilfield in China is recognized for seismically thin sand bodies that usually are not resolved with conventional seismic data. The present study assesses the usefulness of applying seismic multi-attribute analysis to bandwidth extended data in resolving and making inferences about these thin layers. In thin layers, tuning can obscure relationships between seismic amplitude and rock properties. In such cases, the seismic phase varies with the layer impedance and may hence aid in reservoir characterization. A seismically derived relative geologic age may also be a useful attribute in predicting rock properties because it helps define the stratigraphic position of a layer. When utilized in multi-attribute analysis in the Daqing field, spectral decomposition amplitude, phase, and a relative geological age attribute to improved prediction of well log effective porosity from seismic data and are preferentially selected by stepwise regression. The study follows standard methodology by implementing seismic multi-attribute analysis and discusses the improvement of applying it to bandwidth extended data. This will include a combination of attributes such as relative geologic age, phase, amplitude, and the magnitude components of spectrally decomposed data.
Keywords