Energies (Sep 2021)
Experimental Investigation on Uniaxial Compression Mechanical Behavior and Damage Evolution of Pre-Damaged Granite after Cyclic Loading
Abstract
Failure behavior of pillars in deep mines is affected by various cyclic loads that cause initial pre-damage. Pillars will be further damaged and developed in the long-term compressive stress until they are destroyed. To reveal the strength characteristics and crack damage fracture laws after rock pre-damage, uniaxial compression tests were carried out on granite specimens damaged by cyclic loading using the digital speckle correlation method. The experimental results indicate that the mechanical properties of pre-damaged specimens show large damage differences for different cycles. The damage variable of the pre-damaged specimens increases with the increase of cycle number and confining pressure. The damage of specimens is primarily due to the strength weakening effect caused by cycle numbers, and the confining pressure restriction effect is not obvious. The evolution laws of uniaxial compression damage propagation in the pre-damaged specimens show differences and obvious localization phenomenon. Pre-damaged specimens experienced three failure modes in the uniaxial compression test, namely tensile shear failure (Mode I), quasi-coplanar shear failure (Mode II), and stepped path failure (Mode III), and under different pre-damage stress environments with high confining pressures, the failure modes are dominated by Mode II and Mode III, respectively.
Keywords