Clinical Phytoscience (Apr 2021)

Hepatoprotective activity against acetaminophen-induced liver dysfunction and GC-MS profiling of a brown algae Sargassum ilicifolium

  • Khan Hira,
  • Hafiza Farhat,
  • Nida Sohail,
  • Madeeha Ansari,
  • Jehan Ara,
  • Syed Ehteshamul-Haque

DOI
https://doi.org/10.1186/s40816-021-00274-4
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Drug-induced hepatotoxicity is one of the most important causes of liver dysfunction. Acetaminophen (paracetamol) an analgesic-antipyretic drug is generally considered safe but its overdose may cause liver toxicity. Marine macro-algae (seaweeds) especially brown seaweeds possess unique biological activities including hepatoprotective potential. The current study focused on the hepatoprotective effect of different solvent fractions of Sargassum ilicifolium and characterization of its n-hexane soluble fraction. Methods The ethanol extract (20 g) of S. ilicifolium was mixed with solvents of increasing polarity, starting with n-hexane followed by chloroform and methanol. All three (n-hexane, chloroform and methanol) soluble fractions were administered to the rats at dose of 150 mg/kg, b.w. Intraperitoneal administration of acetaminophen (600 mg/kg b.w.) to rats was used to cause liver injury. The hepatic damage was evaluated by liver markers enzymes; aspartate aminotransferases (AST), alanine aminotransferases (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin along with other metabolites i.e., triglycerides, cholesterol, urea, glucose and creatinine. Lipid peroxidation and glutathione and were estimated in liver tissue. n-Hexane fraction was subjected to GC-MS analysis in order to identify potent compounds. Results The oral administration of n-hexane and methanol soluble fractions reduced the acetaminophen-augmented liver marker enzymes ALT, AST, ALP, LDH, along with bilirubin, urea, creatinine, glucose and triglycerides. The n-hexane and methanol soluble fractions also improved hepatic antioxidant level via enhancing hepatic glutathione and reversing lipid peroxidation. GC-MS spectroscopy of n-hexane fraction of S. ilicifolium revealed the presence of some new compounds. Among them, fatty acids were found to be in highest concentration followed by halogenated hydrocarbons, benzene derivatives, and sterols. Fatty acid in seaweed may be one of the factors for hepatoprotection from drug-induced hepatotoxicity. Conclusion From the results, it is evident that n-hexane and methanol soluble fractions of S. ilicifolium have the ability to protect the liver against toxicity, which is comparable with silymarin used as a standard drug. Sargassum ilicifolium contains bioactive compounds with pharmaceutical importance.

Keywords