Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects
Jiaojiao Zhou,
Jilai Jia,
Jiangling He,
Jinjie Li,
Jie Cai
Affiliations
Jiaojiao Zhou
National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Jilai Jia
National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Jiangling He
National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Jinjie Li
Institute of System and Engineering, Beijing 100010, China
Jie Cai
National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
Food safety issues are a major threat to public health and have attracted much attention. Therefore, exploring accurate, efficient, sensitive, and economical detection methods is necessary to ensure consumers’ health. In this regard, cyclodextrins (CDs) are promising candidates because they are nontoxic and noncaloric. The main body of CDs is a ring structure with hydrophobic cavity and hydrophilic exterior wall. Due to the above characteristics, CDs can encapsulate small guest molecules into their cavities, enhance their stability, avoid agglomeration and oxidation, and, at the same time, interact through hydrogen bonding and electrostatic interactions. Additionally, they can selectively capture the target molecules to be detected and improve the sensitivity of food detection. This review highlights recent advances in CD inclusion technology in food safety analysis, covering various applications from small molecule and heavy metal sensing to amino acid and microbial sensing. Finally, challenges and prospects for CDs and their derivatives are presented. The current review can provide a reference and guidance for current research on CDs in the food industry and may inspire breakthroughs in this field.