Scientific Reports (Oct 2024)

Increased expression of the proapoptotic presenilin associated protein is involved in neuronal tangle formation in human brain

  • Chen Yang,
  • Zhong-Ping Sun,
  • Juan Jiang,
  • Xiao-Lu Cai,
  • Yan Wang,
  • Hui Wang,
  • Chong Che,
  • Ewen Tu,
  • Ai-hua Pan,
  • Yan Zhang,
  • Xiao-Ping Wang,
  • Mei-Zhen Cui,
  • Xue-min Xu,
  • Xiao-Xin Yan,
  • Qi-Lei Zhang

DOI
https://doi.org/10.1038/s41598-024-77026-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Presenilin-associated protein (PSAP) is a mitochondrial proapoptotic protein as established in cell biology studies. It remains unknown whether it involves in neurodegenerative diseases. Here, we explored PASP expression in adult and aged human brains and its alteration relative to Alzheimer-disease (AD)-type neuropathology. In pathology-free brains, light PASP immunoreactivity (IR) occurred among largely principal neurons in the cerebrum and subcortical structures. In the brains with AD pathology, enhanced PSAP IR occurred in neuronal and neuritic profiles with a tangle-like appearance, with PSAP and pTau protein levels elevated in neocortical lysates relative to control. Neuronal/neuritic profiles with enhanced PSAP IR partially colocalized with pTau, but invariably with Amylo-Glo labelled tangles. The neuronal somata with enhanced PASP IR also showed diminished IR for casein kinase 1 delta (Ck1δ), a marker of granulovacuolar degeneration; and diminished IR for sortilin, which is normally expressed in membrane and intracellular protein sorting/trafficking organelles. In old 3xTg-AD mice with β-amyloid and pTau pathologies developed in the brain, PSAP IR in the cerebral sections exhibited no difference relative to wildtype mice. These findings indicate that PSAP upregulation is involved in the course of tangle formation especially in the human brain during aging and in AD pathogenesis.

Keywords