口腔疾病防治 (Jun 2022)

Characterization and biocompatibility analysis of different silanes coupling c(RGDfK) cyclic peptide on titanium surfaces

  • ZHOU Qiyue,
  • HONG Gaoying,
  • WU Tong,
  • CHEN Chen,
  • XIE Haifeng

DOI
https://doi.org/10.12016/j.issn.2096-1456.2022.06.003
Journal volume & issue
Vol. 30, no. 6
pp. 398 – 405

Abstract

Read online

Objective To compare the efficiency and biocompatibility of four different silanes on immobilizing c(RGDfK) peptide on titanium surface. Methods After alkali-heat treatment (group OH), the titanium surface was treated with 3-aminopropyltriethoxysilane (APTES) (group OHAP), 3-chloropropyltriethoxysilane (CPTES) (group OHCP) (3-mercaptopropyltrimethoxysilane (MPTS) (group OHMPT) and 3-isobutyryloxy propyltrimethoxysilane(γ- MPS) (group OHMPS) to immobilize the c(RGDfK) cyclic peptide and constructa titanium-silane-c(RGDfK) coating. The NT group was the blank control group. The surface morphology and wettability of the coatings were detected using scanning electron microscopy and contact angle measurement. The elemental composition of the titanium surface was analyzed using X-ray photoelectron spectroscopy. After fluorescent staining with 4’,6-diamino-2-phenylindole (DAPI) and phalloidin, the adhesion of mouse preosteoblast MC3T3-E1 cells on the surface of the materials was observed using laser confocal microscopy. Cell counting kit-8 (CCK-8) and alkaline phosphatase (ALP) activity assays were used to evaluate the proliferation and osteogenic differentiation of MC3T3-E1 cells on the surface of the materials, respectively. Results Scanning electron microscope observation showed a spongy-like 3-dimensional network formed on the titanium surface after alkali-heat treatment with silane-c(RGDfK) coating adhesion. The wettability of each group was greatly improved compared to the untreated titanium surface. The element ratios of Si/Ti and amide-N/Ti in the OHMPS group were the highest. The OHAP group exhibited the best cell adhesion effect. The cell proliferation and ALP activity of the OHAP, OHMPT, and OHMPS groups were significantly higher than the control group (P <0.05); there was no statistical difference between the OHCP group and the control group. Conclusion MPTS, CPTES and γ-MPS covalently immobilized cyclic peptide c(RGDfK) on the titanium surface, which promoted adhesion, proliferation and osteogenic differentiation of MC3T3-E1 cells. Theγ-MPS conjugated C (RGDfK)cyclic peptide exhibited the best effect. MPTS, CPTES and γ-MPS coupled with c(RGDfK) cyclic peptides had similar biological properties.

Keywords