Garlic skin induces shifts in the rumen microbiome and metabolome of fattening lambs
W. Zhu,
Z. Su,
W. Xu,
H.X. Sun,
J.F. Gao,
D.F. Tu,
C.H. Ren,
Z.J. Zhang,
H.G. Cao
Affiliations
W. Zhu
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
Z. Su
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
W. Xu
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
H.X. Sun
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
J.F. Gao
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
D.F. Tu
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
C.H. Ren
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
Z.J. Zhang
College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
H.G. Cao
Corresponding author at: College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
Garlic (Allium sativum L.) and its constituents have been shown to modify rumen fermentation and improve growth performance. Garlic skin, a by-product of garlic processing, contains similar bioactive components as garlic bulb. This study aimed to investigate the effects of garlic skin supplementation on growth performance, ruminal microbes, and metabolites in ruminants. Twelve Hu lambs were randomly assigned to receive a basal diet (CON) or a basal diet supplemented with 80 g/kg DM of garlic skin (GAS). The experiment lasted for 10 weeks, with the first 2 weeks serving as the adaptation period. The results revealed that the average daily gain and volatile fatty acid concentration were higher (P 0.10) affect the α-diversity indices, including the Chao1 index, the abundance-based coverage estimator value, and the Shannon and Simpson indices. At the genus level, garlic skin supplementation altered the ruminal bacterial composition by increasing (P < 0.05) the relative abundances of Prevotella, Bulleidia, Howardella, and Methanosphaera and decreasing (P < 0.05) the abundance of Fretibacterium. Concentrations of 139 metabolites significantly differed (P < 0.05) between the GAS and the CON groups. Among them, substrates for rumen microbial protein synthesis were enriched in the GAS group. The pathways of pyrimidine metabolism, purine metabolism, and vitamin B6 metabolism were influenced (P < 0.05) by garlic skin supplementation. Integrated correlation analysis also provided a link between the significantly altered rumen microbiota and metabolites. Thus, supplementation of garlic skin improved the growth performance of lambs by modifying rumen fermentation through shifts in the rumen microbiome and metabolome.