Fayixue Zazhi (Apr 2024)
Postmortem Diffusion of Aconitum Alkaloids and Their Metabolites in Rabbits
Abstract
Objective To explore the postmortem diffusion rule of Aconitum alkaloids and their metabolites in poisoned rabbits, and to provide a reference for identifying the antemortem poisoning or postmortem poisoning of Aconitum alkaloids. Methods Twenty-four rabbits were sacrificed by tracheal clamps. After 1 hour, the rabbits were administered with aconitine LD50 in decocting aconite root powder by intragastric administration. Then, they were placed supine and stored at 25 ℃. The biological samples from 3 randomly selected rabbits were collected including heart blood, peripheral blood, urine, heart, liver, spleen, lung and kidney tissues at 0 h, 4 h, 8 h, 12 h, 24 h, 48 h, 72 h and 96 h after intragastric administration, respectively. Aconitum alkaloids and their metabolites in the biological samples were analyzed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Results At 4 h after intragastric administration, Aconitum alkaloids and their metabolites could be detected in heart blood, peripheral blood and major organs, and the contents of them changed dynamically with the preservation time. The contents of Aconitum alkaloids and their metabolites were higher in the spleen, liver and lung, especially in the spleen which was closer to the stomach. The average mass fraction of benzoylmesaconine metabolized in rabbit spleen was the highest at 48 h after intragastric administration. In contrast, the contents of Aconitum alkaloids and their metabolites in kidney were all lower. Aconitum alkaloids and their metabolites were not detected in urine. Conclusion Aconitum alkaloids and their metabolites have postmortem diffusion in poisoned rabbits, diffusing from high-content organs (stomach) to other major organs and tissues as well as the heart blood. The main mechanism is the dispersion along the concentration gradient, while urine is not affected by postmortem diffusion, which can be used as the basis for the identification of antemortem and postmortem Aconitum alkaloids poisoning.
Keywords