Remote Sensing (Aug 2022)

Assessment of Satellite-Based Precipitation Products for Estimating and Mapping Rainfall Erosivity in a Subtropical Basin, China

  • Xianghu Li,
  • Xuchun Ye,
  • Chengyu Xu

DOI
https://doi.org/10.3390/rs14174292
Journal volume & issue
Vol. 14, no. 17
p. 4292

Abstract

Read online

Rainfall erosivity is an important indicator for quantitatively representing the erosive power of rainfall. This study expanded three satellite-based precipitation products (SPPs) for estimating and mapping rainfall erosivity in a subtropical basin in China and evaluated their performance at different rainfall erosivity intensities, seasons, and spaces. The results showed that the rainfall erosivity data from GPM-IMERG had the smallest errors compared to the estimates from rain gauge data on monthly and seasonal scales, while data from PERSIANN-CDR and TRMM 3B42 significantly underestimated and slightly overestimated rainfall erosivity, respectively. The three SPPs generally presented different strengths and weaknesses in different seasons. TRMM 3B42 performed best in summer, with small biases, but its performance was less satisfactory in winter. The precision of estimates from GPM-IMERG was higher than that from TRMM 3B42; the biases, especially in winter, were significantly reduced. For different intensities, PERSIANN-CDR overestimated light rainfall erosivity but underestimated heavy rainfall erosivity. In terms of space, TRMM 3B42 and GPM-IMERG correctly presented the spatial pattern of rainfall erosivity. However, PERSIANN-CDR tended to be less skillful in describing its spatial maps. Outcomes of the study provide an insight into the suitability of the SPPs for estimating and mapping rainfall erosivity and suggest possible directions for further improving these products.

Keywords