Applied Sciences (Mar 2024)

Enhancing CT Segmentation Security against Adversarial Attack: Most Activated Filter Approach

  • Woonghee Lee,
  • Younghoon Kim

DOI
https://doi.org/10.3390/app14052130
Journal volume & issue
Vol. 14, no. 5
p. 2130

Abstract

Read online

This study introduces a deep-learning-based framework for detecting adversarial attacks in CT image segmentation within medical imaging. The proposed methodology includes analyzing features from various layers, particularly focusing on the first layer, and utilizing a convolutional layer-based model with specialized training. The framework is engineered to differentiate between tampered adversarial samples and authentic or noise-altered images, focusing on attack methods predominantly utilized in the medical sector. A significant aspect of the approach is employing a random forest algorithm as a binary classifier to detect attacks. This method has shown efficacy in identifying genuine samples and reducing false positives due to Gaussian noise. The contributions of this work include robust attack detection, layer-specific feature analysis, comprehensive evaluations, physician-friendly visualizations, and distinguishing between adversarial attacks and noise. This research enhances the security and reliability of CT image analysis in diagnostics.

Keywords