Microsystems & Nanoengineering (Feb 2022)

Fabrication of crystalline submicro-to-nano carbon wire for achieving high current density and ultrastable current

  • Jufeng Deng,
  • Chong Liu,
  • Dian song,
  • Marc Madou

DOI
https://doi.org/10.1038/s41378-021-00345-z
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Crystalline carbon nanowire arrays were fabricated taking advantage of near-field electrospinning and stress decyanation. A novel fabrication method for carbon nanowires with radii ranging from ~2.15 µm down to ~25 nm was developed based on implementing nitrogen pretreatment on the silica surface and then aligning polymer nanofibers during near-field electrospinning at an ultralow voltage. Stress decyanation was implemented by subsequently pyrolyzing a polymer nanofiber array on the silica surface at 1000 °C for 1 h in an N2 atmosphere, thus obtaining a crystalline carbon nanowire array with a nanostructured surface. Various crystalline nanostructures were fabricated on the nanowire surface, and their electrochemical performance was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Crystalline carbon wires with diameters ranging from micrometers to submicrometers displayed carbon nanoelectrode-like behavior with their CV curve having a sigmoidal shape. A highly crystalline carbon nanowire array showed distinct behavior, having a monotonically increasing straight line as its CV curve and a semicircular EIS spectrum; these results demonstrated its ultrastable current, as determined by electron transfer. Furthermore, nanocrystalline-structured carbon wires with diameters of ~305 nm displayed at least a fourfold higher peak current density during CV (4000 mA/m2) than highly crystalline carbon nanowires with diameters of ~100 nm and porous microwires with diameters of ~4.3 µm.