Scientific Reports (May 2023)

Circulating miRNA expression in long-standing type 1 diabetes mellitus

  • Paula Morales-Sánchez,
  • Carmen Lambert,
  • Jessica Ares-Blanco,
  • Lorena Suárez-Gutiérrez,
  • Elsa Villa-Fernández,
  • Ana Victoria Garcia,
  • Miguel García-Villarino,
  • Juan Ramón Tejedor,
  • Mario F. Fraga,
  • Edelmiro Menéndez Torre,
  • Pedro Pujante,
  • Elías Delgado

DOI
https://doi.org/10.1038/s41598-023-35836-8
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Type 1 diabetes is a chronic autoimmune disease which results in inefficient regulation of glucose homeostasis and can lead to different vascular comorbidities through life. In this study we aimed to analyse the circulating miRNA expression profile of patients with type 1 diabetes, and with no other associated pathology. For this, fasting plasma was obtained from 85 subjects. Next generation sequencing analysis was firstly performed to identify miRNAs that were differentially expressed between groups (20 patients vs. 10 controls). hsa-miR-1-3p, hsa-miR-200b-3p, hsa-miR-9-5p, and hsa-miR-1200 expression was also measured by Taqman RT-PCR to validate the observed changes (34 patients vs. 21 controls). Finally, through a bioinformatic approach, the main pathways affected by the target genes of these miRNAs were studied. Among the studied miRNAs, hsa-miR-1-3p expression was found significantly increased in patients with type 1 diabetes compared to controls, and positively correlated with glycated haemoglobin levels. Additionally, by using a bioinformatic approach, we could observe that changes in hsa-miR-1-3p directly affect genes involved in vascular development and cardiovascular pathologies. Our results suggest that, circulating hsa-miR-1-3p in plasma, together with glycaemic control, could be used as prognostic biomarkers in type 1 diabetes, helping to prevent the development of vascular complications in these patients.