فصلنامه علوم و فناوری فضایی (Apr 2014)

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

  • S. A. Hosseini,
  • S. Noori

Journal volume & issue
Vol. 7, no. 1
pp. 33 – 40

Abstract

Read online

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed and calculations proceed along rays normal to the shock. The solution is iterated until the given body is computed. The inverse method is practical for the calculation of flow field between the shock wave and the body surface. Body calculation with the body analysis is contrasted and according to the entire differences between those; the shape of shock with the coefficient scales is implemented. The normal momentum equation is replaced with a Maslen’s second order pressure equation. This significantlysignificantly decreases machine computation time. The present method predicts laminar and turbulent heating-rates that compare favorably with other researches. Since the method is very high-speed, it can be used for preliminary design, or parametric study of aerodynamics vehicles and thermal protection of hypersonic flows.

Keywords