In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Recurrent palaeo-wildfires in a Cisuralian coal seam: A palaeobotanical view on high-inertinite coals from the Lower Permian of the Paraná Basin, Brazil.

PLoS ONE. 2019;14(3):e0213854 DOI 10.1371/journal.pone.0213854


Journal Homepage

Journal Title: PLoS ONE

ISSN: 1932-6203 (Online)

Publisher: Public Library of Science (PLoS)

LCC Subject Category: Medicine | Science

Country of publisher: United States

Language of fulltext: English

Full-text formats available: PDF, HTML, XML



José Rafael W Benicio

André Jasper

Rafael Spiekermann

Luciane Garavaglia

Etiene Fabbrin Pires-Oliveira

Neli Teresinha Galarce Machado

Dieter Uhl


Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 24 weeks


Abstract | Full Text

Distribution and abundance of charcoal in coal seams (in form of pyrogenic macerals of the inertinites group) have been considered as a reliable tool to interpret the local and regional palaeo-wildfire regimes in peat-forming depositional environments. Although the occurrence of inertinites is globally well documented for the Late Palaeozoic, the description of palaeobotanical evidence concerning the source plants of such charcoal is so far largely missing. In the present study, we provide the first detailed analysis of macro-charcoal preserved in the Barro Branco coal seam, Rio Bonito Formation, Cisuralian of the Paraná Basin, Santa Catarina State, Brazil. Charcoal, in form of macro-charcoal and inertinites, was documented in all the six coal-bearing strata that compose the succession, confirming the occurrence of recurrent palaeo-wildfires during its deposition. Reflectance values indicated a mean charring temperature reaching ~515°C (and up to 1,045°C in excess) and the macro-charcoal exhibits anatomical features of secondary xylem of Agathoxylon. Combination of results derived from palaeobotanical and petrological data demonstrates that gymnosperm-dominated vegetation was repeatedly submitted to fire events and reinforced the hypothesis that Gondwanan mires were high-fire systems during the Cisuralian.