Revista Brasileira de Computação Aplicada (May 2021)
Avaliando aprendizado de máquina na previsão de curto prazo de séries temporais de energia solar
Abstract
Fontes alternativas de energia estão se tornando cada vez mais frequentes, tendo como objetivo reduzir a poluição ambiental, além de serem ideais para superar a crise energética, logo, neste contexto, a energia solar se destaca por ser abundante. Devido ao alto nível de incerteza dos fatores que interferem diretamente na geração de energia solar, como temperatura e radiação solar, realizar previsões de energia solar com alta precisão é um desafio. Assim, o objetivo deste artigo é desenvolver um modelo de previsão por meio de séries temporais que possibilite prever a produção de energia solar, para 1, 3 e 6 passos à frente, enfatizando a potencialidade da rede neural, utilizando um banco de dados de uma usina fotovoltaica localizada no Uruguai. Para o desenvolvimento da proposta, técnicas de pré-processamento e os métodos de previsão regressão de vetores de suporte (Support Vector Regression, SVR), rede neural perceptron multicamadas com regularização bayesiana (Bayesian Regularized Neural Network, BRNN) e modelo linear generalizado (Generalized Linear Model, GLM) foram combinados. Por fim, tais combinações foram comparadas usando medidas de desempenho. Notou-se que a combinação da análise de componentes principais (Principal Components Analysis - PCA) e a Rede Neural Perceptron Multicamadas com Regularização Bayesiana obteve os melhores resultados, utilizando as três medidas de desempenho.
Keywords