Nature Communications (Apr 2023)

Stereodefined polymetalloid alkenes synthesis via stereoselective boron-masking of polyborylated alkenes

  • Nadim Eghbarieh,
  • Nicole Hanania,
  • Ahmad Masarwa

DOI
https://doi.org/10.1038/s41467-023-37733-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Polyborylated-alkenes are valuable polymetalloid reagents in modern organic synthesis, providing access to a wide array of transformations, including the construction of multiple C–C and C–heteroatom bonds. However, because they contain similar boryl groups, many times their transformation faces the main challenge in controlling the chemo-, regio- and stereoselectivity. One way to overcome these limitations is by installing different boron groups that can provide an opportunity to tune their reactivity toward better chemo-, regio- and stereoselectivity. Yet, the preparation of polyborylated-alkenes containing different boryl groups has been rare. Herein we report concise, highly site-selective, and stereoselective boron-masking strategies of polyborylated alkenes. This is achieved by designed stereoselective trifluorination and MIDA-ation reactions of readily available starting polyborylated alkenes. Additionally, the trifluoroborylated-alkenes undergo a stereospecific interconversion to Bdan-alkenes. These transition-metal free reactions provide a general and efficient method for the conversion of polyborylated alkenes to access 1,1-di-, 1,2-di-, 1,1,2-tris-(borylated) alkenes containing BF3M, Bdan, and BMIDA, a family of compounds that currently lack efficient synthetic access. Moreover, tetraborylethene undergoes the metal-free MIDA-ation reaction to provide the mono BMIDA tetraboryl alkene selectively. The mixed polyborylalkenes are then demonstrated to be useful in selective C–C and C–heteroatom bond-forming reactions. Given its simplicity and versatility, these stereoselective boron-masking approaches hold great promise for organoboron synthesis and will result in more transformations.