International Journal of Differential Equations (Jan 2014)

On the Complex Inversion Formula and Admissibility for a Class of Volterra Systems

  • Ahmed Fadili,
  • Hamid Bounit

DOI
https://doi.org/10.1155/2014/948597
Journal volume & issue
Vol. 2014

Abstract

Read online

This paper studies Volterra integral evolution equations of convolution type from the point of view of complex inversion formula and the admissibility in the Salamon-Weiss sens. We first present results on the validity of the inverse formula of the Laplace transform for the resolvent families associated with scalar Volterra integral equations of convolution type in Banach spaces, which extends and improves the results in Hille and Philllips (1957) and Cioranescu and Lizama (2003, Lemma 5), respectively, including the stronger version for a class of scalar Volterra integrodifferential equations of convolution type on unconditional martingale differences UMD spaces, provided that the leading operator generates a C0-semigroup. Next, a necessary and sufficient condition for Lp-admissibility p∈1,∞ of the system's control operator is given in terms of the UMD-property of its underlying control space for a wider class of Volterra integrodifferential equations when the leading operator is not necessarily a generator, which provides a generalization of a result known to hold for the standard Cauchy problem (Bounit et al., 2010, Proposition 3.2).