Tikrit Journal of Engineering Sciences (Mar 2019)
Mechanical and Structural Properties of a Lightweight Concrete with Different Types of Recycling Coarse Aggregate
Abstract
In the light of the world’s technological development in the construction field and the continuous need to apply high-efficiency building materials because old methods are no longer used after the advent of the solutions characterized by fast applications and maximum protection in addition to reducing costs and increasing the sustainability of the establishment and its design age. The lightweights of various installations are an urgent need to decrease the dead loads. Therefore, this study is a local focus on replacing the normal coarse aggregate with lightweight coarse aggregate (claystone (bonza), rubber, thermostone and polystyrene) in various volumetric ratios of (25, 50 and 75) % in addition to a preparation of reference mix. For the purpose of identifying and studying the important specifications the new concrete which contributes to the self-load reduction of the concrete by reducing the total density of the mixture, models of cylinders and standard prisms were prepared, to evaluate the compressive strength and the splitting tensile strength respectively. In addition to that the modulus of rupture and the unit weight, where carried out. The tests results indicated a drop in the mechanical properties of the concrete with increase in the lightweight coarse aggregate, mechanical properties values: compressive strength, rupture modulus, splitting tensile strength and flexural strength were between (10.66-28.99) MPa (1.122-3.372) MPa, (3.606-6.83) MPa and (20.101-25.874)MPa compared with a reference mixes (38.44MPa), (3.969MPa), (10.476MPa) and (26.940)MPa respectively for mixes of (25, 50 and75)% with different light coarse aggregate , also the values of an oven-dry density were between (1665.5-2287.58)kg/m3 compared with reference mixes (2426.41kg/m³). The best concrete mix was (M7, M10) of low density (1598.4 kg/m3) and (1580.4) kg /m3 and the compression strength within the permissible limits (15.47) MPa.
Keywords