Mathematical Biosciences and Engineering (Sep 2023)
Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay
Abstract
This work examines a stochastic viral infection model with a general distributed delay. We transform the model with weak kernel case into an equivalent system through the linear chain technique. First, we establish that a global positive solution to the stochastic system exists and is unique. We establish the existence of a stationary distribution of a positive solution under the stochastic condition $ R^s > 0 $, also referred to as a stationary solution, by building appropriate Lyapunov functions. Finally, numerical simulation is proved to verify our analytical result and reveals the impact of stochastic perturbations on disease transmission.
Keywords