International Journal of Molecular Sciences (Mar 2019)

Quantum Chemical and Kinetic Study on Radical/Molecule Formation Mechanism of Pre-Intermediates for PCTA/PT/DT/DFs from 2-Chlorothiophenol and 2-Chlorophenol Precursors

  • Chenpeng Zuo,
  • Hetong Wang,
  • Wenxiao Pan,
  • Siyuan Zheng,
  • Fei Xu,
  • Qingzhu Zhang

DOI
https://doi.org/10.3390/ijms20071542
Journal volume & issue
Vol. 20, no. 7
p. 1542

Abstract

Read online

Polychlorinated phenoxathiins (PCPTs), polychlorinated dibenzothiophenes (PCDTs), and polychlorinated thianthrenes (PCTAs) are sulfur analogues of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/DFs). Chlorothiophenols (CTPs) and chlorophenols (CPs) are key precursors for the formation of PCTA/PT/DTs, which can react with H or OH to form chloro(thio)phenoxy radical, sulfydryl/hydroxyl-substituted phenyl radicals, and (thio)phenoxyl diradicals. However, previous radical/radical PCTA/DT formation mechanisms in the literature failed to explain the higher concentration of PCDTs than that of PCTAs under the pyrolysis or combustion conditions. In this work, a detailed thermodynamics and kinetic calculations were carried out to investigate the pre-intermediate formation for PCTA/PT/DTs from radical/molecule coupling of the 2-C(T)P with their key radical species. Our study showed that the radical/molecule coupling mechanism explains the gas-phase formation of PCTA/PT/DTs in both thermodynamic and kinetic perspectives. The S/C coupling modes to form thioether-(thio)enol intermediates are preferable over the O/C coupling modes to form ether-(thio)enol intermediates. Thus, although the radical/molecule coupling of chlorophenoxy radical with 2-C(T)P has no effect on the PCDD/PT formation, the radical/molecule coupling of chlorothiophenoxy radical with 2-C(T)P plays an important role in the PCTA/PT formation. Most importantly, the pre-PCDT intermediates formation pathways from the couplings of sulfydryl/hydroxyl-substituted phenyl radical with 2-C(T)P and (thio)phenoxyl diradicals with 2-C(T)P are more favorable than pre-PCTA/PT intermediates formation pathways from the coupling of chlorothiophenoxy radical with 2-C(T)P, which provides reasonable explanation for the high PCDT-to-PCTA ratio in the environment.

Keywords