Journal of Marine Science and Engineering (Aug 2024)
A New Cross-Domain Motor Fault Diagnosis Method Based on Bimodal Inputs
Abstract
Electric motors are indispensable electrical equipment in ships, with a wide range of applications. They can serve as auxiliary devices for propulsion, such as air compressors, anchor winches, and pumps, and are also used in propulsion systems; ensuring the safe and reliable operation of motors is crucial for ships. Existing deep learning methods typically target motors under a specific operating state and are susceptible to noise during feature extraction. To address these issues, this paper proposes a Resformer model based on bimodal input. First, vibration signals are transformed into time–frequency diagrams using continuous wavelet transform (CWT), and three-phase current signals are converted into Park vector modulus (PVM) signals through Park transformation. The time–frequency diagrams and PVM signals are then aligned in the time sequence to be used as bimodal input samples. The analysis of time–frequency images and PVM signals indicates that the same fault condition under different loads but at the same speed exhibits certain similarities. Therefore, data from the same fault condition under different loads but at the same speed are combined for cross-domain motor fault diagnosis. The proposed Resformer model combines the powerful spatial feature extraction capabilities of the Swin-t model with the excellent fine feature extraction and efficient training performance of the ResNet model. Experimental results show that the Resformer model can effectively diagnose cross-domain motor faults and maintains performance even under different noise conditions. Compared with single-modal models (VGG-11, ResNet, ResNeXt, and Swin-t), dual-modal models (MLP-Transformer and LSTM-Transformer), and other large models (Swin-s, Swin-b, and VGG-19), the Resformer model exhibits superior overall performance. This validates the method’s effectiveness and accuracy in the intelligent recognition of common cross-domain motor faults.
Keywords