Scientific Reports (Jul 2022)
Invasive brown treesnakes (Boiga irregularis) move short distances and have small activity areas in a high prey environment
Abstract
Abstract Animal movements reflect temporal and spatial availability of resources as well as when, where, and how individuals access such resources. To test these relationships for a predatory reptile, we quantified the effects of prey abundance on the spatial ecology of invasive brown treesnakes (Boiga irregularis) on Guam. Five months after toxicant-mediated suppression of a brown treesnake population, we simultaneously used visual encounter surveys to generate relative rodent abundance and radiotelemetry of snakes to document movements of surviving snakes. After snake suppression, encounter rates for small mammals increased 22-fold and brown treesnakes had smaller mean daily movement distances (24 ± 13 m/day, $$\overline{x }$$ x ¯ ± SD) and activity areas (5.47 ± 5 ha) than all previous observations. Additionally, snakes frequenting forest edges, where our small mammal encounters were the highest, had smaller mean daily movement distances and three-dimensional activity volumes compared to those within the forest interior. Collectively, these results suggest that reduced movements by snakes were in part a response to increased prey availability. The impact of prey availability on snake movement may be a management consideration when attempting to control cryptic invasive species using tools that rely on movement of the target species to be effective.