Nanomaterials (Jul 2019)

A Review on Brittle Fracture Nanomechanics by All-Atom Simulations

  • Sandeep P. Patil,
  • Yousef Heider

DOI
https://doi.org/10.3390/nano9071050
Journal volume & issue
Vol. 9, no. 7
p. 1050

Abstract

Read online

Despite a wide range of current and potential applications, one primary concern of brittle materials is their sudden and swift collapse. This failure phenomenon exhibits an inability of the materials to sustain tension stresses in a predictable and reliable manner. However, advances in the field of fracture mechanics, especially at the nanoscale, have contributed to the understanding of the material response and failure nature to predict most of the potential dangers. In the following contribution, a comprehensive review is carried out on molecular dynamics (MD) simulations of brittle fracture, wherein the method provides new data and exciting insights into fracture mechanism that cannot be obtained easily from theories or experiments on other scales. In the present review, an abstract introduction to MD simulations, advantages, current limitations and their applications to a range of brittle fracture problems are presented. Additionally, a brief discussion highlights the theoretical background of the macroscopic techniques, such as Griffith’s criterion, crack tip opening displacement, J-integral and other criteria that can be linked to the fracture mechanical properties at the nanoscale. The main focus of the review is on the recent advances in fracture analysis of highly brittle materials, such as carbon nanotubes, graphene, silicon carbide, amorphous silica, calcium carbonate and silica aerogel at the nanoscale. These materials are presented here due to their extraordinary mechanical properties and a wide scope of applications. The underlying review grants a more extensive unravelling of the fracture behaviour and mechanical properties at the nanoscale of brittle materials.

Keywords