International Journal of Molecular Sciences (Nov 2022)

Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration

  • Anuj Kumar,
  • So-Yeon Won,
  • Ankur Sood,
  • So-Yeon Choi,
  • Ritu Singhmar,
  • Rakesh Bhaskar,
  • Vineet Kumar,
  • Sun Mi Zo,
  • Sung-Soo Han

DOI
https://doi.org/10.3390/ijms232214158
Journal volume & issue
Vol. 23, no. 22
p. 14158

Abstract

Read online

Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.

Keywords