Journal of Mechanical Engineering (Jun 2020)
Non-stationary Response of a Carbon Nanotube-reinforced Composite Conical Shell
Abstract
This paper is devoted to the development of a method for the analysis of the non-stationary deformation of a carbon nanotube-reinforced composite shell under pulsed loading. The development of innovative manufacturing technologies has led to the emergence of new materials that have high potential for use in the aerospace industry. In particular, these include carbon nanotube-reinforced materials, or so-called nanocomposites. These materials demonstrate high strength and rigidity in combination with low weight, which is especially important when designing components of rocket and aircraft structures: fairings, fuel tanks, engines. At the same time, the behavior of structural elements under typical environmental influences requires additional studies due to the anisotropic and functional-gradient properties of materials. The determination of the mechanical properties of a nanocomposite is a known difficulty due to its anisotropic nature. There are various approaches to solving this problem. The simplest and at the same time well-proven one is the modified mixing rule, which is used in the paper. Equations of motion of the conical shell under the action of shock loading are obtained. To derive the equations of motion of the shell, a high-order theory is used that takes into account shifts and rotational inertia. To analyze the non-stationary dynamics of the shell, its free vibrations are analyzed. The analysis results are highly accurate compared to the finite element calculation carried out in the ANSYS software suite. A method is proposed for analyzing the dynamical response of the shell under the action of impact loading, which is based on the eigenvibration analysis of structures. Time dependencies of adapter deformations are obtained for the cases of actuation of two and four symmetrically arranged pyrodevices. The results of the analysis of the non-stationary dynamics of the adapter were compared with the finite element analysis results.
Keywords