Fruit Research (Jan 2024)

Genome-wide identification and expression pattern analysis of the ACS gene family during fruit development in peach

  • Xiaofei Wang,
  • Kang Dong,
  • Jun Cheng,
  • Bin Tan,
  • Xianbo Zheng,
  • Xia Ye,
  • Wei Wang,
  • Langlang Zhang,
  • Jiancan Feng

DOI
https://doi.org/10.48130/frures-0023-0040
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 9

Abstract

Read online

Ethylene plays an important role in regulating the development and ripening of fruits, and 1-aminocyclopropane carboxylic acid synthase is the key rate-limiting enzyme in ethylene synthesis pathway. In this study, eight PpACS genes were identified from the peach genome [Prunus persica (L.) Batsch], and their phylogeny, gene structures, promoter motifs and expression patterns were analyzed. The PpACS genes could be divided into four types, and the genes with similar structures and motif distribution clustered together. Identification of the cis-elements in the promoters revealed that the PpACS genes may respond to various hormones. Furthermore, expression analysis showed that five (PpACS1, PpACS5, PpACS6, PpACS7 and PpACS8) of the eight PpACS genes were expressed at different stages during peach fruit development. Among them, PpACS1 was highly expressed at the ripening stage and induced by ethylene. The expression peaks of PpACS5, PpACS6, PpACS7 and PpACS8 during the transition from first exponential growth to pit hardening (S1 to S2) indicated a potential function of ethylene during this important transition. Taken together, these results provide valuable information for future investigation into the functions of the PpACS genes during peach fruit development and ripening.

Keywords