Translational Neuroscience (Feb 2022)

CLSPCOL rescues Alzheimer’s disease mouse models

  • Kusakari Shinya,
  • Nawa Mikiro,
  • Hashimoto Yuichi,
  • Matsuoka Masaaki

DOI
https://doi.org/10.1515/tnsci-2022-0209
Journal volume & issue
Vol. 13, no. 1
pp. 11 – 19

Abstract

Read online

Calmodulin-like skin protein (CLSP) inhibits Alzheimer’s disease (AD)-related neurotoxicity. The activity of CLSP is reduced in AD. To restore the CLSP activity, we developed a hybrid peptide named CLSPCOL, consisting of CLSP(1–61) and the collagen-homologous region (COL) of adiponectin. It was previously shown that the CLSPCOL-mediated restoration of the reduced CLSP activity alleviated memory impairment and neuronal synaptic loss in APPswe/PS1dE9 double transgenic mice (APP/PS1 mice) at an advanced phase. Here, we examined whether CLSPCOL is effective against the memory impairment of the APP/PS1 mice at an early phase, and the memory impairment, caused by the temporal disturbance of the cholinergic neurotransmission, that mimics a part of AD-linked neuronal abnormality. The CLSPCOL-mediated restoration of the CLSP activity corrected the impairment in acquisition of fear-conditioned memory at an early-phase AD model. A single subcutaneous injection of CLSPCOL rescued the short-term working memory impairment, caused by subcutaneous injection of scopolamine. We have concluded that CLSPCOL is a promising disease-modifying therapeutic agent for not only the advanced phase but also the early-phase AD. It also serves as a symptomatic modifier of AD by potentiating the cholinergic neurotransmission.

Keywords