Asian Journal of Andrology (Jan 2024)
Defects in phospholipase C zeta cause polyspermy and low fertilization after conventional IVF: not just ICSI failure
Abstract
Phospholipase C zeta (PLCζ) is a key sperm-borne oocyte-activating factor that triggers Ca2+ oscillations and the subsequent block to polyspermy following gamete fusion. Mutations in PLCZ1, the gene encoding PLCζ, cause male infertility and intracytoplasmic sperm injection (ICSI) fertilization failure; and PLCζ expression and localization patterns are significantly correlated with ICSI fertilization rate (FR). However, in conventional in vitro fertilization (cIVF), whether and how sperm PLCζ affects fertilization remain unclear. Herein, we identified one previously reported and two novel PLCZ1 mutations associated with polyspermy in vitro that are characterized by excessive sperm–zona binding and a delay in pronuclei (PN) formation. Immunofluorescence staining and oocyte activation testing revealed that virtually all spermatozoa from patients lacked functional PLCζ and were thus unable to evoke Ca2+ oscillations. ICSI with an artificial oocyte activation treatment successfully rescued the polyspermic phenotype and resulted in a live birth. Furthermore, we analyzed PLCζ in an additional 58 males after cIVF treatment in the Reproductive and Genetic Hospital of CITIC-Xiangya (Changsha, China) between February 2019 and January 2022. We found that the proportion of spermatozoa that expressed PLCζ was positively correlated with both 2PN rate and total FR. The optimal cutoff value below which males were likely to experience low FR (total FR ≤30%) after cIVF was 56.7% for the proportion of spermatozoa expressing PLCζ. Our study expands the mutation and the phenotypic spectrum of PLCZ1 and further suggests that PLCζ constitutes a promising biomarker for identifying low FRs cases in cIVF due to sperm-related oocyte activation deficiency and that sperm PLCζ analysis may benefit the wider male population and not only men with ICSI failure.
Keywords