Forests (Oct 2018)

Analyzing the Vertical Distribution of Crown Material in Mixed Stand Composed of Two Temperate Tree Species

  • Olivier Martin-Ducup,
  • Robert Schneider,
  • Richard A. Fournier

DOI
https://doi.org/10.3390/f9110673
Journal volume & issue
Vol. 9, no. 11
p. 673

Abstract

Read online

The material distribution inside tree crowns is difficult to quantify even though it is an important variable in forest management and ecology. The vertical distribution of a relative density index (i.e., vertical profile) of the total, woody, and leafy material at the crown scale were estimated from terrestrial laser scanner (TLS) data on two species, sugar maple (Acer saccharum Marsh.) and balsam fir (Abies Balsamea Mill.). An algorithm based on a geometrical approach readily available in the Computree open source platform was used. Beta distributions were then fitted to the vertical profiles and compared to each other. Total and leafy profiles had similar shapes, while woody profiles were different. Thus, the total vertical distribution could be a good proxy for the leaf distribution in the crown. Sugar maple and balsam fir had top heavy and bottom heavy distributions respectively, which can be explained by their respective architectural development. Moreover, the foliage distribution of sugar maples shifted towards the crown base when it was found in mixed stands, when compared to pure stands. The opposite behavior was observed for balsam firs, but less pronounced. According to the shape of the foliage distribution, sugar maple takes advantages from mixture contrarily to balsam fir. From a methodological point of view, we proposed an original approach to separate wood from leaf returns in TLS data while taking into account occlusion. Wood and leaf separation and occlusion problems are two challenging issues for most TLS-based studies in forest ecology.

Keywords