JDS Communications (Jan 2021)
Evaluation of PEETER V1.0 urine sensors for measuring individual urination behavior of dairy cows
Abstract
Due to environmental concerns around N leaching and NO2 emissions from intensive pastoral dairying systems, there has been an increase in research focused on mitigation strategies and on-animal technologies to evaluate urination behavior of grazing dairy cows. Nitrogen leaching and NO2 emissions are associated with urine nitrogen loading onto pasture, which is a function of urine nitrogen concentration and urine volume per urination event. The PEETER V1.0 urine sensor (Lincoln University, Christchurch, New Zealand) is a promising on-animal measurement technology; however, it has yet to be validated in vivo. The objective of this work was to validate the PEETER V1.0 urine sensor's estimations of individual urination events (i.e., urine volume). We fitted 15 Holstein-Friesian × Jersey lactating dairy cows (506 ± 35 kg of live weight, body condition score of 3.75 ± 0.25, and 150.4 ± 20.7 d in milk) with individual PEETER V1.0 sensors and placed them in metabolism crates for 72 h. Every urination event (n = 480) was collected manually and compared with the urine volume estimated by the PEETER V1.0 sensor to determine precision and accuracy using Lin's concordance correlation coefficient (CCC). The CCC is calculated as a function of the Pearson's correlation (precision) and bias correction factor (Cb; Cb = 1 is perfect), and it demonstrates how far the values of the 2 methods are from perfect agreement (accuracy; i.e., a 45° line). The mean urination event volume (mean ± standard deviation) was 2.7 ± 0.94 and 2.6 ± 0.92 L for the actual and PEETER V1.0 sensor, respectively. The PEETER V1.0 sensor showed excellent precision (r = 0.90) with near-perfect accuracy (Cb = 1.00), and the CCC value was high (CCC = 0.90), indicating excellent agreement. Based on these results, the PEETER V1.0 urine sensor provides estimates that are precise and accurate. We conclude that the PEETER V1.0 sensor can be used to evaluate urination behavior of grazing dairy cows.