Microorganisms (Nov 2019)

Structural Insights into <i>Escherichia coli</i> Shiga Toxin (Stx) Glycosphingolipid Receptors of Porcine Renal Epithelial Cells and Inhibition of Stx-Mediated Cellular Injury Using Neoglycolipid-Spiked Glycovesicles

  • Johanna Detzner,
  • Caroline Gloerfeld,
  • Gottfried Pohlentz,
  • Nadine Legros,
  • Hans-Ulrich Humpf,
  • Alexander Mellmann,
  • Helge Karch,
  • Johannes Müthing

DOI
https://doi.org/10.3390/microorganisms7110582
Journal volume & issue
Vol. 7, no. 11
p. 582

Abstract

Read online

Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galβ1-4Glcβ1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.

Keywords