EBioMedicine (Feb 2017)

Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions

  • Clara Lubeseder-Martellato,
  • Katharina Alexandrow,
  • Ana Hidalgo-Sastre,
  • Irina Heid,
  • Sophie Luise Boos,
  • Thomas Briel,
  • Roland M. Schmid,
  • Jens T. Siveke

DOI
https://doi.org/10.1016/j.ebiom.2016.12.013
Journal volume & issue
Vol. 15, no. C
pp. 90 – 99

Abstract

Read online

Fluid-phase endocytosis is a homeostatic process with an unknown role in tumor initiation. The driver mutation in pancreatic ductal adenocarcinoma (PDAC) is constitutively active KRasG12D, which induces neoplastic transformation of acinar cells through acinar-to-ductal metaplasia (ADM). We have previously shown that KRasG12D-induced ADM is dependent on RAC1 and EGF receptor (EGFR) by a not fully clarified mechanism. Using three-dimensional mouse and human acinar tissue cultures and genetically engineered mouse models, we provide evidence that (i) KRasG12D leads to EGFR-dependent sustained fluid-phase endocytosis (FPE) during acinar metaplasia; (ii) variations in plasma membrane tension increase FPE and lead to ADM in vitro independently of EGFR; and (iii) that RAC1 regulates ADM formation partially through actin-dependent regulation of FPE. In addition, mice with a pancreas-specific deletion of the Neural-Wiskott–Aldrich syndrome protein (N-WASP), a regulator of F-actin, have reduced FPE and impaired ADM emphasizing the in vivo relevance of our findings. This work defines a new role of FPE as a tumor initiating mechanism.

Keywords