Materials (Jan 2020)

Measurement of Fracture Toughness of Pure Tungsten Using a Small-Sized Compact Tension Specimen

  • Byeong Seo Kong,
  • Ji Ho Shin,
  • Changheui Jang,
  • Hyoung Chan Kim

DOI
https://doi.org/10.3390/ma13010244
Journal volume & issue
Vol. 13, no. 1
p. 244

Abstract

Read online

The evaluation of fracture toughness of pure tungsten is essential for the structural integrity analysis in a fusion reactor. Therefore, the accurate quantification of fracture toughness of tungsten alloys is needed. However, due to the inherent brittleness of tungsten, it is difficult to introduce a sharp fatigue pre-crack needed for the fracture toughness test. In this study, a novel fatigue pre-cracking method was developed and applied to the small-sized disc-type compact tension (DCT) specimens of double-forged pure tungsten. To overcome the brittleness and poor oxidation resistance, a low-frequency tensile fatigue pre-cracking was performed at 600 °C in Ar environment, which resulted in the introduction of a sharp pre-crack to DCT specimens. Then, fracture toughness tests were conducted at room temperature (RT), 400 °C, and 700 °C in air and Ar gas environments using as-machined and pre-cracked DCT specimens. At RT and 400 °C, the test environment and crack tip radius did not affect the fracture toughness measurement. However, at 700 °C, the Ar gas environment and the presence of a sharp fatigue pre-crack resulted in a decrease in the measured fracture toughness. Thus, it was suggested that, for the conservative fracture toughness measurement of pure tungsten, fatigue pre-cracking and fracture toughness test should be performed in an inert environment, especially for high-temperature tests.

Keywords