Journal of Materials Research and Technology (Jul 2022)

The influence of interface effect on the microstructure and mechanical behavior of tri-metal Ti/Al/Cu laminated metal composites

  • Taiqian Mo,
  • Huaqiang Xiao,
  • Bo Lin,
  • Wei Li,
  • Kai Ma

Journal volume & issue
Vol. 19
pp. 520 – 531

Abstract

Read online

A new strategy via a combination of rolling bonding and isolation method was developed to evaluate the mechanical behavior of Ti/Al/Cu laminated metal composite (LMC) under the rule of mixture (ROM) condition, with a great emphasis on the effect of interface structure. The results showed that the development of the microstructure through the thickness of the Al layer was inhomogeneous after rolling bonding, which was attributed to the formation of shearing action caused by the difference in flow properties between the constituent layers. Additionally, the evolution of the crystallographic texture of the Al layer at different positions indicated that the severe shearing effect resulted in the appearance of a typical shear texture r-Cube {001} component in the region near the Ti side, and the coexistence of deformation and recrystallization textures in the region near the Cu side was considered to be the result of dynamic recovery. The measured strengths of Ti/Al/Cu LMCs significantly deviated from the predicted strengths in the calculation scheme of Cu, Al and Ti single sheets by the ROM (about 22.2 MPa), while the Ti + Al/Cu and Cu + Al/Ti schemes exhibited a slight deviation for the predicted results (about 4.7 MPa and 9 MPa). It is found that the existence of the layer interface contributed to the development of mechanical properties as a result of crack nucleation and propagation during plastic deformation, resulting in a large deviation between the experimental results and the predicted values in the scheme of ignoring the interface effect.

Keywords