ETRI Journal (Apr 2024)

A conditionally applied neural network algorithm for PAPR reduction without the use of a recovery process

  • Eldaw E. Eldukhri,
  • Mohammed I. Al-Rayif

DOI
https://doi.org/10.4218/etrij.2022-0470
Journal volume & issue
Vol. 46, no. 2
pp. 227 – 237

Abstract

Read online

This study proposes a novel, conditionally applied neural network technique to reduce the overall peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) system while maintaining an acceptable bit error rate (BER) level. The main purpose of the proposed scheme is to adjust only those subcarriers whose peaks exceed a given threshold. In this respect, the developed C-ANN algorithm suppresses only the peaks of the targeted subcarriers by slightly shifting the locations of their corresponding frequency samples without affecting their phase orientations. In turn, this achieves a reasonable system performance by sustaining a tolerable BER. For practical reasons and to cover a wide range of application scenarios, the threshold for the subcarrier peaks was chosen to be proportional to the satura-tion level of the nonlinear power amplifier used to pass the generated OFDM blocks. Consequently, the optimal values of the factor controlling the peak threshold were obtained that satisfy both reasonable PAPR reduction and acceptable BER levels. Furthermore, the proposed system does not require a recovery process at the receiver, thus making the computational process less complex. The simulation results show that the proposed system model performed satisfactorily, attaining both low PAPR and BER for specific application settings using comparatively fewer computations.

Keywords