Micromachines (Jan 2023)

Atomic-Resolution Imaging of Micron-Sized Samples Realized by High Magnetic Field Scanning Tunneling Microscopy

  • Weixuan Li,
  • Jihao Wang,
  • Jing Zhang,
  • Wenjie Meng,
  • Caihong Xie,
  • Yubin Hou,
  • Zhigang Xia,
  • Qingyou Lu

DOI
https://doi.org/10.3390/mi14020287
Journal volume & issue
Vol. 14, no. 2
p. 287

Abstract

Read online

Scanning tunneling microscopy (STM) can image material surfaces with atomic resolution, making it a useful tool in the areas of physics and materials. Many materials are synthesized at micron size, especially few-layer materials. Limited by their complex structure, very few STMs are capable of directly positioning and imaging a micron-sized sample with atomic resolution. Traditional STMs are designed to study the material behavior induced by temperature variation, while the physical properties induced by magnetic fields are rarely studied. In this paper, we present the design and construction of an atomic-resolution STM that can operate in a 9 T high magnetic field. More importantly, the homebuilt STM is capable of imaging micron-sized samples. The performance of the STM is demonstrated by high-quality atomic images obtained on a graphite surface, with low drift rates in the X–Y plane and Z direction. The atomic-resolution image obtained on a 32-μm graphite flake illustrates the new STM’s ability of positioning and imaging micron-sized samples. Finally, we present atomic resolution images at a magnetic field range from 0 T to 9 T. The above advantages make our STM a promising tool for investigating the quantum hall effect of micron-sized layered materials.

Keywords