BMC Bioinformatics (Dec 2005)

NemaFootPrinter: a web based software for the identification of conserved non-coding genome sequence regions between <it>C. elegans </it>and <it>C. briggsae</it>

  • Morandi Paolo,
  • Guffanti Alessandro,
  • Rambaldi Davide,
  • Cassata Giuseppe

DOI
https://doi.org/10.1186/1471-2105-6-S4-S22
Journal volume & issue
Vol. 6, no. Suppl 4
p. S22

Abstract

Read online

Abstract Background NemaFootPrinter (Nematode Transcription Factor Scan Through Philogenetic Footprinting) is a web-based software for interactive identification of conserved, non-exonic DNA segments in the genomes of C. elegans and C. briggsae. It has been implemented according to the following project specifications: a) Automated identification of orthologous gene pairs. b) Interactive selection of the boundaries of the genes to be compared. c) Pairwise sequence comparison with a range of different methods. d) Identification of putative transcription factor binding sites on conserved, non-exonic DNA segments. Results Starting from a C. elegans or C. briggsae gene name or identifier, the software identifies the putative ortholog (if any), based on information derived from public nematode genome annotation databases. The investigator can then retrieve the genome DNA sequences of the two orthologous genes; visualize graphically the genes' intron/exon structure and the surrounding DNA regions; select, through an interactive graphical user interface, subsequences of the two gene regions. Using a bioinformatics toolbox (Blast2seq, Dotmatcher, Ssearch and connection to the rVista database) the investigator is able at the end of the procedure to identify and analyze significant sequences similarities, detecting the presence of transcription factor binding sites corresponding to the conserved segments. The software automatically masks exons. Discussion This software is intended as a practical and intuitive tool for the researchers interested in the identification of non-exonic conserved sequence segments between C. elegans and C. briggsae. These sequences may contain regulatory transcriptional elements since they are conserved between two related, but rapidly evolving genomes. This software also highlights the power of genome annotation databases when they are conceived as an open resource and the possibilities offered by seamless integration of different web services via the http protocol. Availability: the program is freely available at http://bio.ifom-firc.it/NTFootPrinter