ERJ Open Research (Oct 2022)
Prevalence and genetic basis of first-line drug resistance of Mycobacterium tuberculosis in Ca Mau, Vietnam
Abstract
Background and objective Data on the prevalence of anti-tuberculous drug resistance and its association with genetic mutations in Mycobacterium tuberculosis are limited. Our study explores the genomics of tuberculosis in Ca Mau, Vietnam. Methods Patients ≥15 years in Ca Mau Province, Vietnam, were screened annually for tuberculosis between 2014 and 2017. Isolates underwent drug susceptibility testing (DST) using the breakpoint method. DNA was extracted and whole genome sequencing (WGS) was performed. Results We identified 365 positive sputum cultures for M. tuberculosis and processed 237 for DST and 265 for WGS. Resistance to isoniazid was present in 19.8% (95% CI 14.7 to 24.9%), rifampicin in 3.5% (1.1 to 5.7%) and ethambutol in 2.5% (0.9 to 5.4%) of isolates. Relevant mutations in rpoB gene were detected in 3.8% (1.8 to 6.8%). katG, inhA or fabG1 mutations were found in 19.6% (15.0 to 24.9%) with KatG being most common at 12.8% (9.1–17.5%). We found 38.4% of isolates were of Beijing lineage, 49.4% East-African-Indian lineage and 8.4% European-American lineage. There were no associations between resistance profiles and clinical features. Conclusion The high burden of isoniazid resistance and the katG mutation highlights the challenges facing Vietnam in its efforts to achieve its EndTB goals.