Nuclear Materials and Energy (Jun 2024)

First study of the location of deuterium in displacement-damaged tungsten by nuclear reaction analysis in channeling configuration

  • S. Markelj,
  • E. Punzón-Quijorna,
  • M. Kelemen,
  • T. Schwarz-Selinger,
  • R. Heller,
  • X. Jin,
  • F. Djurabekova,
  • E. Lu,
  • J. Predrag

Journal volume & issue
Vol. 39
p. 101630

Abstract

Read online

Nuclear reaction analysis (NRA-C) together with Rutherford backscattering spectrometry (RBS-C), both in a channeling configuration were used to study the location of deuterium (D) in irradiation-induced defects in tungsten (W) using a 3He probe beam. The defects were created by W ion irradiation at two different damage doses of 0.02 and 0.2 dpa and two temperatures of 290 K and 800 K. Angular scans over the 〈100〉 axial channel showed that for both 800 K irradiated samples the NRA yield peaks in the centre of the channel, where the RBS is at its minimum. For the room-temperature-irradiated samples this is only true for the low dose. For the high dose sample hardly any peak is observed. 2D channeling maps were recorded for the samples damaged to 0.02 dpa at 290 K and 0.2 dpa at 800 K. They show in addition to the maximum D signal in the 〈100〉 axial channel increased intensity in a (110) planar channel where the RBS intensities are low. The software algorithm RBSADEC was used to investigate the location of the D in the lattice. A first comparison of simulation and experiment suggests that D is located close to tetrahedral sites.

Keywords