Materials (Jun 2024)

The Influence of Microstructural Arrangement on the Failure Characteristics of 3D-Printed Polymers: Exploring Damage Behaviour in Acrylonitrile Butadiene Styrene

  • Sofiane Guessasma,
  • Sofiane Belhabib

DOI
https://doi.org/10.3390/ma17112699
Journal volume & issue
Vol. 17, no. 11
p. 2699

Abstract

Read online

This study investigated how printing conditions influence the fracture behaviour of 3D-printed acrylonitrile butadiene styrene (ABS) under tensile loading. Dog-bone-shaped ABS specimens were produced using the fusion filament fabrication technique, with varying printing angles. Tensile tests were conducted on pre-notched specimens with consistent pre-notch lengths but different orientations. Optical and scanning electron microscopies were employed to analyse crack propagation in the pre-notched specimens. In order to support experimental evidence, finite element computation was implemented to study the damage induced by the microstructural rearrangement of the filaments when subject to tensile loading. The findings revealed the simple linear correlation between the failure properties including elongation at break and maximum stress in relation to the printing angle for different pre-notch lengths. A more progressive damage was found to support the ultimate performance of the studied material. This experiment evidence was used to build a damage model of 3D-printed ABS that accounts for the onset, growth, and damage saturation. This damage modelling is able to capture the failure properties as a function of the printing angle using a sigmoid-like damage function and a modulation of the stiffness within the raster. The numerical results demonstrated that damage pattern develops as a result of the filament arrangement and weak adhesion between adjacent filaments and explains the diffuse damage kinetics observed experimentally. This study concludes with a topological law relating the notch size and orientation to the rupture properties of 3D-printed ABS. This study supports the idea of tailoring the microstructural arrangement to control and mitigate the mechanical instabilities that lead to the failure of 3D-printed polymers.

Keywords