Photonics (Oct 2024)
Thomson Scattering and Radiation Reaction from a Laser-Driven Electron
Abstract
We investigate the dynamics of electrons initially counter-propagating to an ultra-fast ultra-intense near-infrared laser pulse using a model for radiation reaction based on the classical Landau–Lifshitz–Hartemann equation. The electrons, with initial energies of 1 GeV, interact with laser fields of up to 1023 W/cm2. The radiation reaction effects slow down the electrons and significantly alter their trajectories, leading to distinctive Thomson scattering spectra and radiation patterns. It is proposed to use such spectra, which include contributions from harmonic and Doppler-shifted radiation, as a tool to measure laser intensity at focus. We discuss the feasibility of this approach for state-of-the-art and near-future laser technologies. We propose using Thomson scattering to measure the impact of radiation reaction on electron dynamics, thereby providing experimental scenarios for validating our model. This work aims to contribute to the understanding of electron behavior in ultra-intense laser fields and the role of radiation reaction in such extreme conditions. The specific properties of Thomson scattering associated with radiation reaction, shown to be dominant at the intensities of interest here, are highlighted and proposed as a diagnostic tool, both for this phenomenon itself and for laser characterization in a non-intrusive way.
Keywords