International Journal of Molecular Sciences (Jul 2020)

CPPF, A Novel Microtubule Targeting Anticancer Agent, Inhibits the Growth of a Wide Variety of Cancers

  • Ho Jin Han,
  • Chanmi Park,
  • Joonsung Hwang,
  • Thimmegowda N.R.,
  • Sun-Ok Kim,
  • Junyeol Han,
  • Minsik Woo,
  • Shwetha B,
  • In-Ja Ryoo,
  • Kyung Ho Lee,
  • Hyunjoo Cha-Molstad,
  • Yong Tae Kwon,
  • Bo Yeon Kim,
  • Nak-Kyun Soung

DOI
https://doi.org/10.3390/ijms21134800
Journal volume & issue
Vol. 21, no. 13
p. 4800

Abstract

Read online

In the past, several microtubule targeting agents (MTAs) have been developed into successful anticancer drugs. However, the usage of these drugs has been limited by the acquisition of drug resistance in many cancers. Therefore, there is a constant demand for the development of new therapeutic drugs. Here we report the discovery of 5-5 (3-cchlorophenyl)-N-(3-pyridinyl)-2-furamide (CPPF), a novel microtubule targeting anticancer agent. Using both 2D and 3D culture systems, we showed that CPPF was able to suppress the proliferation of diverse cancer cell lines. In addition, CPPF was able to inhibit the growth of multidrug-resistant cell lines that are resistant to other MTAs, such as paclitaxel and colchicine. Our results showed that CPPF inhibited growth by depolymerizing microtubules leading to mitotic arrest and apoptosis. We also confirmed CPPF anticancer effects in vivo using both a mouse xenograft and a two-step skin cancer mouse model. Using established zebrafish models, we showed that CPPF has low toxicity in vivo. Overall, our study proves that CPPF has the potential to become a successful anticancer chemotherapeutic drug.

Keywords