Photonics (Mar 2023)

Luminous Flux in Ex-Vivo Porcine Eyes during Endoillumination and during Transscleral Illumination Depending on the Transmission Properties of the Eyewall

  • Nicole Fehler,
  • Martin Heßling

DOI
https://doi.org/10.3390/photonics10040362
Journal volume & issue
Vol. 10, no. 4
p. 362

Abstract

Read online

(1) Background: During eye surgery, it is important that sufficient light enlightens the inside of the eye for small structures to become visible. The intraocular brightness is influenced by the luminous flux of the illumination system. However, the intraocular luminous flux during surgery has not been investigated so far. Insufficient luminous flux makes vision difficult for the surgeon, whereas excessive luminous flux can cause damage to the retina. Therefore, the luminous flux in lightly and strongly pigmented eyes is determined by endoillumination and diaphanoscopic illumination. (2) Methods: First, the luminous flux emitted from a diaphanoscopic illumination fiber is measured. For determining the intraocular luminous flux, this is multiplied with the transmission properties of the eyewall, which are determined for ex vivo porcine eyes. In order to compare the luminous flux of transscleral illumination with that of endoillumination, the luminous flux of various endoillumination fibers is examined. (3) Results: The results reveal that the total transmission of the eyewall is up to 2.5 times higher for blue/lightly pigmented eyes than for brown/strongly pigmented eyes. With this, the intraocular luminous flux in ex vivo porcine eyes is around 95% higher for less pigmented eyes than for strong pigmented eyes, considering intraocular reflections. (4) Conclusion: To obtain the same brightness in blue and brown eyes, the surgeon can reduce the intensity of the light source when illuminating blue eyes to reduce their retinal risk.

Keywords