Nature Communications (Oct 2024)

Direct observation of deformation and resistance to damage accumulation during shock loading of stabilized nanocrystalline Cu-Ta alloys

  • B. C. Hornbuckle,
  • R. K. Koju,
  • G. Kennedy,
  • P. Jannotti,
  • N. Lorenzo,
  • J. T. Lloyd,
  • A. Giri,
  • K. Solanki,
  • N. N. Thadhani,
  • Y. Mishin,
  • K. A. Darling

DOI
https://doi.org/10.1038/s41467-024-53142-3
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Energy absorption by matter is fundamental to natural and man-made processes. However, despite this ubiquity, developing materials capable of withstanding severe energy fluxes without degradation is a significant challenge in materials science and engineering. Despite recent advances in creating alloys resistant to energy fluxes, mitigating the damage caused by the absorption and transfer of mechanical energy remains a critical obstacle in both fundamental science and technological applications. This challenge is especially prominent when the mechanical energy is transferred to the material by shock loading. This study demonstrates a phenomenon in which microstructurally stabilized nanocrystalline Cu-Ta alloys can undergo reversal or nearly complete recovery of the dislocation structure after multiple shock-loading impacts, unlike any other known metallic material. The microstructure of these alloys can withstand repeated shock-wave interactions at pressures up to 12 GPa without any significant microstructural damage or deterioration, demonstrating an extraordinary capacity to be virtually immune to the detrimental effects of shock loading.