CSEE Journal of Power and Energy Systems (Jan 2024)

Security Constrained Distributed Transaction Model for Multiple Prosumers

  • Haiteng Han,
  • Sichen Shen,
  • Zhinong Wei,
  • Mohammed Olama,
  • Haixiang Zang,
  • Guoqiang Sun,
  • Yizhou Zhou

DOI
https://doi.org/10.17775/CSEEJPES.2022.06950
Journal volume & issue
Vol. 10, no. 2
pp. 834 – 843

Abstract

Read online

Massive access of renewable energy has prompted demand-side distributed resources to participate in regulation and improve flexibility of power systems. With large-scale access of massive, decentralized, and diverse distributed resources, demand-side market members have transformed from traditional “consumers” to “prosumers”. To explore the distributed transaction model of prosumers, in this paper, a multi-prosumer distributed transaction model is proposed, and the Conditional Value-at-Risk (CVaR) theory is applied to quantify potential risks caused by the stochastic characteristics inherited from renewable energy. First, a prosumer model under constraints of the distribution network including photovoltaic units, fuel cells, energy storage system, central air conditioning and flexible loads is established, and a multi-prosumer distributed transaction strategy is proposed to achieve power sharing among multiple prosumers. Second, a prosumer transaction model based on CVaR is constructed to measure risks inherited from the uncertainty of PV output within the prosumer and ensure safety of system operation in extreme PV output scenarios. Then, the alternating direction multiplier method (ADMM) is utilized to solve the constructed model efficiently. Finally, distributed transaction costs of prosumers are distributed fairly based on the generalized Nash equilibrium to maximize social benefits. Simulation results show the multi-prosumer distributed transaction mechanism established under the proposed generalized Nash equilibrium method can encourage power sharing among prosumers, increasing their own income and social benefits. Also, the CVaR can assist decision making of prosumers in weighting the risks and benefits, improving system resilience through energy management of prosumers.

Keywords