Veterinary World (Feb 2019)
Antiretroviral activity of Pterois volitans (red lionfish) venom in the early development of human immunodeficiency virus/acquired immunodeficiency syndrome antiretroviral alternative source
Abstract
Aim: This study aimed to investigate the antiviral activity of Pterois volitans phospholipase A2 (PV-PLA2) from Indonesia to human immunodeficiency virus (HIV). Materials and Methods: Fresh venomous fin parts of wild PV specimens were collected from Java Sea waters. Then, it washed using phosphate buffer pH 7.0 and immersed in phosphate buffer pH 7.0 0.01 m containing CaCl2 0.001 m for 24 h. The immersed fin then allowed for extraction process by sonicating for 2×8 min with 80% pulse and 20 kHz output with temperature controlling to avoid denaturation. The crude venom (CV) extracted from the fin is allowed for purification by 80% ethanol (ET) precipitation and ammonium sulfate fractionation method. The purified PV-PLA2 then analyzed using Lowry's method, Marinette's method, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 3-(4, 5-dimethyl thiazol-2yl)-2, 5-diphenyl tetrazolium bromide assay. After determining the purest and safest sample of six samples analyzed, the chosen sample then tested into simian retrovirus-2 (SRV2)-A549 culture (48×104 cells/mL at 1-4 ppm), and compared to the CV sample (1-4 ppm) and lamivudine (100 ppm). The culture then is analyzed using a quantitative real time-polymerase chain reaction to find out the copy number of SRV-2 virus in each culture. Results: The protein's activity, concentration, and purity analysis revealed that the PV-PLA2 purified using ammonium sulfate fractionation has the highest activity (1.81 times higher than the CV at 80% fractionation) and has higher purity than the sample from ET fractionation. The testing of the sample purified using ammonium sulfate fractionation at 80% saturation level shown that it has a 97.78% inhibition level toward SRV2-A549 culture at 4 ppm. However, in comparison to lamivudine which has 99.55% inhibition level at 100 ppm, it needs much lower concentration to achieve the same result. Conclusion: The significant inhibition of SRV2-A549 culture shown that the PV-PLA2 extracted from PV venom has the potential to become anti-HIV substances. It would be worthwhile to further evaluate the antiretroviral activity of PV-PLA2 in the in vivo studies.
Keywords