Scientific Reports (Oct 2024)
Therapeutic effects of DOX-loaded hydrogel MOF nanocarriers on triple negative breast cancer and derivative design via reinforcement learning
Abstract
Abstract Triple negative breast cancer (TNBC) is one of the most difficult of all types of breast cancer to treat. TNBC is characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The development of effective drugs can help to alleviate the suffering of patients. The novel nickel(II)-based coordination polymer (CP), [Ni2(HL)(O)(H2O)3·H2O] (1) (where H4L=[1,1’:2’,1’’-triphenyl]-3,3’’,4’,5’-tetracarboxylic acid), was synthesized via solvothermal reaction in this study. The overall structure of CP1 was fully identified by SXRD, Fourier transform infrared spectroscopy and elemental analysis. Using advanced chemical synthesis, we developed Hyaluronic Acid/Carboxymethyl Chitosan-CP1@Doxorubicin (HA/CMCS-CP1@DOX), a nanocarrier system encapsulating doxorubicin (DOX), which was thoroughly characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TGA). These analyses confirmed the integration of doxorubicin and provided data on the nanocarriers’ stability and structure. In vitro experiments showed that this system significantly downregulated Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) in triple-negative breast cancer cells and inhibited their proliferation. Molecular docking simulations revealed the biological effects of CP1 are derived from its carboxyl groups. Using reinforcement learning, multiple new derivatives were generated from this compound, displaying excellent biological activities. These findings highlight the potential clinical applications and the innovative capacity of this nanocarrier system in drug development.
Keywords